Titanium dioxide: inhalation toxicology and epidemiology.
نویسندگان
چکیده
Titanium dioxide (TiO(2)) is manufactured worldwide in large quantities for use in a wide range of applications and is normally considered to be toxicologically inert. Findings of tumours in the lungs of rats exposed chronically to high concentrations of TiO(2), but not in similarly exposed mice or hamsters, suggest that the tumorigenic response may be a rat-specific phenomenon but nonetheless raises concerns for potential human health effects. With the limited toxicological understanding of species differences in response to inhaled TiO(2) and a similarly limited amount of epidemiological information with respect to TiO(2) exposure in the workplace, a consortium of TiO(2) manufacturers in Europe (under the European Chemistry Industry Council; CEFIC) and in North America (under the American Chemistry Council; ACC) initiated a programme of research to investigate inter-species differences as a result of exposure to TiO(2) and to conduct detailed epidemiological surveys of the major manufacturing sites. The toxicology studies exposed rats, mice and hamsters to pigment-grade TiO(2) (PG-TiO(2), 0, 10, 50 and 250 mg m(-3)) or ultrafine TiO(2) (UF-TiO(2), 0, 0.5, 2 and 10 mg m(-3)) for 90 days and the lung burdens and tissue responses were evaluated at the end of the exposure period and for up to 1 year after exposure. Results demonstrated clear species differences. Rats and mice had similar lung burdens and clearance rates while hamsters showed high clearance rates. At high lung particle burdens, rats showed a marked progression of histopathological lesions throughout the post-exposure period while mice and hamsters showed minimal initial lesions with recovery apparent during the post-exposure period. Lung neutrophil responses, a sensitive marker of inflammatory changes, reflected the development or recovery of the histopathological lesions. The use of surface area rather than gravimetric lung burden provided closer correlates of the burden to the biological effect across both TiO(2) types. The epidemiological investigations evaluated the mortality statistics at 11 European and 4 US TiO(2) manufacturing plants. They concluded that there was no suggestion of any carcinogenic effect associated with workplace exposure to TiO(2).
منابع مشابه
Characterization of Aerosols of Titanium Dioxide Nanoparticles Following Three Generation Methods Using an Optimized Aerosolization System Designed for Experimental Inhalation Studies
Nanoparticles (NPs) can be released in the air in work settings, but various factors influence the exposure of workers. Controlled inhalation experiments can thus be conducted in an attempt to reproduce real-life exposure conditions and assess inhalation toxicology. Methods exist to generate aerosols, but it remains difficult to obtain nano-sized and stable aerosols suitable for inhalation expe...
متن کاملAcute group poisoning by titanium dioxide: inhalation exposure may cause metal fume fever.
A large quantity of white gas containing titanium dioxide and hydrogen chloride was generated unexpectedly during an experiment in a chemical laboratory. Fourteen students and staff complained of nausea, dyspnea, or respiratory irritation immediately after inhaling the gas. On arrival at Saint Luke's International Hospital, more than half of the patients presented with low-grade fever. Symptoms...
متن کاملEvaluation of epigenetic changes of liver tissue induced by oral administration of Titanium dioxide nanoparticles and possible protective role of Nigella Sativa oil, in adult male albino rats
Objective (s): Titanium dioxide nanoparticles (TiO2 NPs) have been recognized as biologically inert material and have been used in a multitude of applications. Nevertheless, the negative impact on the human health is not yet well understood. Aim of the work: The study attempted to evaluate the epigenetic changes of the genome, in the form of DNA methylation in liver tissue samples, resulting fr...
متن کاملLung dosimetry and risk assessment of nanoparticles: evaluating and extending current models in rats and humans.
Risk assessment of occupational exposure to nanomaterials is needed. Human data are limited, but quantitative data are available from rodent studies. To use these data in risk assessment, a scientifically reasonable approach for extrapolating the rodent data to humans is required. One approach is allometric adjustment for species differences in the relationship between airborne exposure and int...
متن کاملComparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity.
Most pigment-grade titanium dioxide (TiO(2)) samples that have been tested in pulmonary toxicity tests have been of a generic variety-i.e., generally either uncoated particles or TiO(2) particles containing slightly hydrophilic surface treatments/coatings (i.e., base TiO(2)). The objectives of these studies were to assess in rats, the pulmonary toxicity of inhaled or intratracheally instilled T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Annals of occupational hygiene
دوره 49 6 شماره
صفحات -
تاریخ انتشار 2005